

COURSE PLAN

FIRST: AUTOMOTIVE ENGINEERING

College						
College	Faculty of Engine	Faculty of Engineering Technology				
Department	Mechanical Engin	Mechanical Engineering				
Course						
Course Title	Mechanical Drafti	Mechanical Drafting				
Course Code	020200112	020200112				
Credit Hours	2 (0 Theoretical, 2	2 (0 Theoretical, 2 Practical)				
Prerequisite	020000171					
Instructor						
Name	Dr. Waleed Moma	Dr. Waleed Momani				
Office No.	199	199				
Tel (Ext)	199					
E-mail	Momani.w@bau.edu.jo					
Office Hours						
Class Times	Building	Day	Start Time	End Time	Room	
Text Book						

K.L. Naryana, P Kanniah, K. Venkata Reddy, Machine Drawings Title

References

- 1. Franklin D. Jones, Mechanical Drawings, 4th edition
- 2. Engineering Design Graphics by James H. Earle
- 3. David A. Madsen, Introduction to Engineering Drawing and Design, 5th Ed.

SECOND: PROFESSIONAL INFORMATION

COURSE DESCRIPTION

This course covers a knowledge of design specifications by identifying standard parts from assembly drawings and parts drawings, analyze the shape of the assembly part by realizing the three-dimensional shape from the projection method, Identify the optimal shape, dimensions and major tolerances for the function of element parts. And it also provided the knowledge of the design method, material, work equipment, method from assembly drawings and parts drawings.

COURSE OBJECTIVES

By the completion of the course, the student should be able to:

- Explain the basic of design, Assembly drawings, sectional views, sectioning in machine parts drawing.
- Explain the Bolted joints, Studded, screw fastening, cotter; key, splined joints, gears and bearing.
- Explain the shape of the assembly part by realizing the three-dimensional shape from the projection method
- Explain the optimal shape, dimensions and major tolerances for the function of element parts,

- tolerances, fittings and surface roughness
- Explain how to determine the design method, material, work equipment and method from assembly drawings and Parts drawings
- Develop a working competence of mechanical drafting using AutoCAD program.

COURSE LEARNING OUTCOMES

By the end of the course, the students will be able to:

- CLO1. Prepare for design work.
- CLO2. Explain and perform assembly drawings.
- CLO3. Explain and apply sectional views and sectioning in machine parts drawing.
- CLO4. Explain standard machine parts: bolt, screw, cotter; key, gears and bearing.
- CLO5. Analyze the shape of the assembly part by realizing the three-dimensional shape from the projection method.
- CLO6. Identify the optimal shape, dimensions and major tolerances for the function of element parts.
- CLO7. Develop detailed and complex assembly drawings.
- CLO8. Interpret and draw tolerances, fittings and surface roughness.
- CLO9. Determine the design method.
- CLO10. Determine material, work equipment and method from assembly drawings and Parts drawings.
- CLO11. Apply AutoCAD program to assembly drawings.

COURSE SYLLABUS Related LO Pr And Reference

Week	Unit	Content	and Reference (Chapter)	Proposed Assignments
1	Prepare design	 Important Drawing Equipment's Lettering and Lines Guide Lines and Spacing of Letters Prepare design specifications by identifying standard parts (a) drawing terminology (b) drawing species (c) size and style of drawing 	CLO1	
2	Parts drawings.	 Geometric Nomenclature Techniques of Geometric Constructions Projection Isometric Drawing Orthographic or Multi View Projection Parts drawings (a) Projection (b) Pictorial projection drawing (c) Angle projection 	CLO1	
3	Assembly drawings	Assembly drawings	CLO2	Practice report

4	Sectional views	Sectional views Sectioning in machine parts	CLO3	
	Sectional views	drawing	CLOS	
5	Bolted joints, Studded, screw fastening, cotter, keyed, splined joints, gears and bearing.	 bolted joints Studded; screw fastening, cotter Keyed; splined joints, gears and bearing 	CLO4	Practice report
6	Analyze the shape of the assembly part 1	 Analyze the shape of the assembly part by realizing the three-dimensional shape from the projection method 	CLO5	Practice report
7	Analyze the shape of the assembly part by realizing the three-dimensional • Shape from the projection method		CLO5	
8	Midterm Exam			
9	dimensions and tolerances	 Dimensions Letter Styles and Technique of Lettering Guide Lines and Spacing of Letters Tolerances 	CLO6	
10	Drawing Detailing; assembly drawing	 Drawing Detailing Assembly drawing	CLO7	
11	tolerances	Reading and drawing tolerancesFittings and surface roughness	CLO8	Practice report
12	Design method	Determine the design method	CLO9	
13	Material, work equipment and method from assembly drawings and Parts drawings	 Editing 3D solid models Solid Editing tools 3d Assembly drawing Align 3d Dimensioning 	CLO10	Practice report
14	AutoCAD Applications1	 Constructing 2d objects Surfaces tools, Surface meshes, Edge surf tool, Rule surf tool Tab surf tool 	CLO11	
15	AutoCAD Applications2	 Other 3d modeling Raster images in AutoCAD drawings Polygonal viewports Printing/Plotting 	CLO11	Practice report
16	Final Exam			

COURSE LEARNING RESOURCES

The effectiveness of teaching in this course depends on making students familiar with identifying standard parts from assembly drawings and parts drawings, analyze the shape of the assembly part by realizing the

three-dimensional shape from the projection method, Identify the optimal shape, dimensions and major tolerances for the function of element parts, determine the design method, material, work equipment and method from assembly drawings and parts drawings

Teaching methods:

- Lectures and Home Works: using PowerPoint for, example, by the teacher to provide the students with the all information that they need, and to give them a home work as a research and reports.
- Online research skills, watching related videos such as you tube, on topics related to course objectives and recent developments in the field of specific work.
 - Learning skills and adaptability: Developed by transferring students and reconfiguring work teams to enable them to adapt to other individuals from time to time.
 - Life lectures, application on the program, animations and related videos

ONLINE RESOURCES

www.autodesk.com

ASSESSMANT TOOLS

(Write assessment tools that will be used to test students ability to understand the course material and gain the skills and competencies stated in learning outcomes

ASSESSMENT TOOLS	%
Quizzes	12
Researches and Reports	8
Mid Exam	30
Final Exam	50
TOTAL MARKS	100

THIRD: COURSE RULES

ATTENDANCE RULES

Attendance and participation are extremely important, and the usual University rules will apply. Attendance will be recorded for each lab. Absence of 10% will result in a first written warning. Absence more than 15% of the course with or without medical reasons will result in forfeiting the course and the student will not be permitted to attend the final examination

GRADING SYSTEM

Example:

0-49 Fail

50 - 100 Pass

REMARKS

{The instructor can add any comments and directives such as the attendance policy and topics related to ethics}

COURSE COORDINATOR

Al-Balqa Applied University

Course Coordinator: Dr. Waleed Momani
Signature:
Date:

Department Head:
Signature:
Date: